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ABSTRACT

Motivation: Computational methods are widely used to discover
gene–disease relationships hidden in vast masses of available
genomic and post-genomic data. In most current methods, a
similarity measure is calculated between gene annotations and
known disease genes or disease descriptions. However, more explicit
gene–disease relationships are required for better insights into the
molecular bases of diseases, especially for complex multi-gene
diseases.
Results: Explicit relationships between genes and diseases
are formulated as candidate gene definitions that may include
intermediary genes, e.g. orthologous or interacting genes. These
definitions guide data modelling in our database approach for gene–
disease relationship discovery and are expressed as views which
ultimately lead to the retrieval of documented sets of candidate
genes. A system called ACGR (Approach for Candidate Gene
Retrieval) has been implemented and tested with three case studies
including a rare orphan gene disease.
Availability: The ACGR sources are freely available at http://
bioinfo.loria.fr/projects/acgr/acgr-software/. See especially the file
‘disease_description’ and the folders ‘Xcollect_scenarios’ and
‘ACGR_views’.
Contact: devignes@loria.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Understanding the molecular basis of a disease ultimately means
correlating disease symptoms with altered gene function(s) thus
highlighting gene–disease relationships. Identifying the genes
responsible for human diseases is a first step towards this goal.
More than 6100 disease phenotypes are described in the OMIM
(Online Mendelian Inheritance in Man) database (DB). Among
these phenotypes, more than 2400 have at least one known
molecular basis (entries prefixed with #). Thus, about 3700 disease
phenotypes described in the OMIM DB are not yet associated with
any responsible gene. These disease phenotypes are particularly
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challenging since they include rare syndromes for which limited
experimental data are available and complex multi-genic disorders
involving various causative and susceptibility genes (Botstein and
Risch, 2003).

Integrative genomics approaches are becoming indispensable
tools for discovering new gene–disease relationships. These
approaches rely on efficient exploitation of functional genomics data
sources (Giallourakis et al., 2005) and take advantage of numerous
computer-based systems that have been developed in the last 5
years. These systems can be classified into three main groups. First,
generalist systems predict disease genes based on their properties
or interactions (Adie et al., 2005; Calvo et al., 2007; Lopez-Bigas
and Ouzounis, 2004; Lopez-Bigas et al., 2006; Oti et al., 2006;
Tu et al., 2006; Xu and Li, 2006). Consistent features are thus
detected among approximately 1600 disease genes listed in the
OMIM morbid map and used for these studies. Indeed, disease genes
tend to be longer, are composed of more exons, show a higher degree
of interspecies conservation, and are involved in more interactions
than other genes. However, these approaches are unable to establish
the correspondence between a given disease and a set of genes.

The second group of systems apply strategies relying on the
hypothesis that similar diseases are most likely caused by similar
genes. These strategies are often called prioritization methods since
they aim to rank a given list of genes with respect to their probability
to cause a disease (Adie et al., 2006; Aerts et al., 2006; Freudenberg
and Propping, 2002; George et al., 2006; Perez-Iratxeta et al.,
2002, 2005; Rossi et al., 2006; Turner et al., 2003). Additionally,
alternative strategies based on the same similarity hypothesis aim
to characterize user-defined groups of genes (Barillot et al., 2004;
Chiang et al., 2006; Masseroli et al., 2004, 2005; Sun et al., 2006).
In order to find additional responsible genes, prioritization methods
are often applied to a single disease whose associated chromosomal
loci are known. A pool of statistical methods is then used to compute
similarity measures dealing with various gene features. Such gene
features are particularly well covered in the endeavour system
(Aerts et al., 2006), e.g. sequence similarity, domain composition,
tissue expression, Gene Ontology (GO) annotation, interspecies
conservation, protein–protein interactions, involved pathways and
cis-regulatory elements. However, this type of prioritization strategy
requires at least one well-known gene to be used as a reference
candidate gene.
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Discovery of gene–disease relationships

Finally, a third group of methods gathers integrated systems
that help users to formulate complex multi-criteria queries to
retrieve appropriate collections of relevant genes. For instance, the
GeneSeeker system (van Driel et al., 2005) and the GeneSorter
functionality proposed by UCSC Genome Browser (Kent et al.,
2005) allow experts to test various hypotheses on criteria that can
link genes to diseases. An example is found in Tiffin et al. (2005),
who developed a strategy to identify genes expressed in tissue
affected by a disease. Hence, candidate genes are selected if their
corresponding annotations with respect to a controlled vocabulary
(i.e. eVOC, which is used in Ensembl EST annotation) match the
disease annotation. Relevant eVOC annotations for the studied
diseases were derived from PubMed abstracts using text-mining
techniques.

The Approach for Candidate Gene Retrieval (ACGR) presented
in this article is inspired from this last group of methods. Indeed,
we propose four steps to guide the discovery of gene–disease
relationships. First, several precise definitions of candidate genes
are formulated. Next, these definitions are used to design a relational
data model and to populate a dedicated DB with relevant data
extracted from various internet resources. Finally, to retrieve sets of
candidate genes, DB views that express candidate gene definitions
are created. Available experimental data can be included in the
disease gene definitions and thus exploited together with public
annotation data. The approach presented here is tested with three
case studies, including a rare orphan gene syndrome.

2 SYSTEMS AND METHODS

2.1 Explicit gene–disease relationships
The definition of a candidate gene provided by the Webster Medical
Dictionary is ‘any gene thought likely to cause a disease’. This definition
implies that a candidate gene is a gene which is somehow related to a
disease. However, specific gene–disease relationships that exist between
candidate genes and studied diseases can be articulated in more useful ways
by considering information that is available in various public DBs as well as
wet-lab datasets.

The most obvious relationship between candidate genes and disease,
hereafter called ‘is_co-localized_with’ (denoted by l), expresses the inferred
relationship between the localization of a candidate gene and a chromosomal
region linked to a given disease. This principle embodied within this
statement has guided positional cloning for a long time. The precision
of disease localization on chromosomes is highly variable depending on
available data. Thanks to recent techniques such as array-CGH (Shaw-
Smith et al., 2004; Vermeesch et al., 2007; Vissers et al., 2005), available
localization data can be refined using experimental data.

Another direct relationship is tissue or developmental co-expression of
both genes and disease features. This relationship has been used in various
prioritization methods (Tiffin et al., 2005). A variant of this relationship
called ‘is_dysregulated_in’ (denoted by d) considers the dysregulation
(over-expression or repression) of candidate genes in transcriptomic studies
involving patient samples.

Functional annotation of genes is improving in most available DBs
and can be connected to disease descriptions. Hence a relationship called
‘has_similar_functional_annotation_with’ (denoted by f) is defined on the
basis of a similarity measure between functional annotations of a gene and
a disease.

One key aspect of our approach is that the relationship between a
candidate gene and a disease may also involve an intermediate gene
which satisfies some relationship with the disease. Here, we explore two
types of intermediate genes, namely orthologous and interacting genes.

It is noteworthy that the co-localization relationship l only applies to
the candidate gene itself; whereas, both dysregulation d and functional
similarity f relationships apply to intermediate genes as well. Complex
definitions are then constructed in the form: ‘a candidate gene is a gene
that is co-localized with the disease and is orthologous to a gene that has
similar functional annotation with the disease’ and ‘a candidate gene is a
gene that is co-localized with the disease and that interacts with a gene that
is dysregulated in patients affected by the disease’. The former definition
assumes the existence of two relationships, namely l and f, which connect
the disease with the candidate gene and with one of its orthologs in a model
organism, respectively. The latter definition assumes the existence of two
relationships, namely l and d, which connect the disease with the candidate
gene and with one of its interaction partners, respectively. Further complex
definitions can be formulated similarly, such as ‘a candidate gene is a gene
that is co-localized with the disease and that interacts with a gene which
is in turn orthologous to a gene having similar functional annotation with
the disease’. Retrieving sets of candidate genes which match such complex
definitions from masses of biological data are the challenge taken up by the
ACGR approach described in this article.

2.2 Relevance of functional gene–disease relationships
In order to assess the relevance of discovered gene–disease relationships,
we introduce a measure quantifying the functional similarity relationship f
between a gene and a disease. However, to date, no common vocabulary is
available to describe functional features of both diseases and genes, hence
impeding any straight-forward comparison of disease and gene functional
annotations. Current prioritization methods quantify the functional similarity
between test genes and training genes based on their GO annotations
(Khatri and Draghici, 2005). Ideally the disease functional features should
be described with GO vocabulary so that the similarity between gene and
disease can be obtained by calculating the similarity between their GO
annotations. In practice such disease annotation is performed by an expert
of the disease.

This procedure for assessing the relevance of gene–disease relationship
presents three main advantages. First, an initial set of training genes is no
longer required. Second, available knowledge about the disease is included
in disease description. Finally, the rich GO annotations that are available
for genes from model organisms will be propagated to human genes thanks
to candidate gene definitions involving intermediate orthologous genes.

2.3 Overall presentation of the ACGR approach
The following five steps conceptually describe the proposed in silico
methodology for candidate gene retrieval. (i) Our system takes as input a
functional description of a disease, established by an expert using the GO
vocabulary (see Section 3.2), as well as available experimental datasets. The
system then collects data from various public DBs. (ii) It first retrieves genes
sharing GO annotations with the input disease from either human or model
organisms. (iii) Next, relevant annotations of these genes are added, including
cytogenetic localization, functional annotation, interacting genes and human
orthologs of genes from model organisms. (iv) All retrieved genes are then
assigned similarity values that are calculated on the basis of their annotation
similarity with the input disease. (v) Finally, sets of candidate genes along
with relevant annotation data are built that correspond to various candidate
gene definitions.

Our system’s architecture is centred on a DB which is controlled by a
DataBase Management System (DBMS). There are three main features of
a DBMS that make it attractive to use: centralized data management, data
independence and data integration. This contrasts with conventional data
processing systems in which each application program has direct access
to the data it manipulates. In a DBMS, all data are integrated thereby
reducing redundancies and inconsistencies and making data management
more efficient. Finally, the existence of a domain data model ensures global
data coherence.
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The most commonly used conceptual framework for a DBMS is
the three-level architecture suggested by the ANSI/SPARC committee
(ANSI/X3/SPARC, 1975). The three levels are considered as three different
views on the data: (i) the external level or individual user view; (ii) the
conceptual level or community user view; and (iii) the internal level or
storage view. This three-level DB architecture allows a clear separation of
the information meaning (conceptual view) from the physical data structure
layer. A DB system that can separate these modelling levels is likely to be
flexible and adaptable. The external level is a restricted view on the data,
and the same DB may provide a number of different views for different
categories of users or needs. In our approach, the candidate gene definitions
proposed in Section 2.1 constitute external views on data collected about
genes and diseases. The conceptual level determines the data model of the
domain of interest, and includes all the information that will be represented
in the DB. Finally, the physical model will be replaced here with the so-
called ‘logical model’ (Teorey et al., 2006) because the latter is independent
of any particular commercial DBMS.

3 ALGORITHM

3.1 DB design
The detailed definitions and relationships presented in Section 2.1
lead to a specification of the various types of data relevant for the
retrieval of candidate genes. The resulting conceptual data model is
presented in Figure 1 in a common entity–relationship (ER) format.

Queries corresponding to any candidate gene definition (Section
2.1) can be addressed to a DB constructed according to the model
shown in Figure 1. For example, the definition of a candidate
gene as ‘a gene that is co-localized (l gene–disease relationship)
with a disease and that is orthologous to a gene that has similar
functional annotation with that disease (f gene–disease relationship)’
can be represented using the ‘Gene’, ‘Disease’, ‘GO_term’ and
‘Ranking_Tool’ entities that are linked by the ‘Is_Orthologous_To’
and ‘Is_Ranked As’ relationships. The ‘Has-Value_in’ relationship
expresses the d gene–disease relationship as a ratio between
experimental values measured, for a given gene and a given
experiment, in samples from diseased versus healthy patients. The
relational logical data model presented in Table 1 is derived from
this conceptual model.

Fig. 1. Conceptual data model for the ACGR DB. Entity types are
represented as boxes and relationship types as ellipses. Participation of an
entity in a relationship is quantified as the minimal and maximal number of
times each occurrence of the entity can participate in the relationship. Note
that Cytoband in the Gene entity is an abbreviation for ‘cytogenetic band’.

3.2 Populating the DB
On the basis of the relational data model, it is possible to specify
the initialization steps of ACGR DB. Entering a disease description
consists of inserting one row of data, hereafter called a tuple,
into the ‘Disease’ table and several tuples in the ‘GO_Term’ and
‘Disease_GO_Term’ tables. To this aim, an expert of the studied
disease has to carefully (i) extract from her knowledge and from
OMIM the phenotypes which characterize the disease, (ii) associate
keywords to these phenotypes and (iii) retrieve the most relevant GO
terms corresponding to these keywords. The ‘Author_ID’ attribute
is useful to distinguish different descriptions of the same disease.
When available, experimental data are entered by inserting one tuple
into the ‘Experiment’ table for each performed experiment, and
several tuples into the ‘Gene’ and ‘Gene_In_Experiment’ tables,
representing all signature genes and their dysregulation ratios.
Finally, the system retrieves from public DBs all human, mouse
and fly genes that are annotated by at least one GO term associated
with the studied disease. Only gene identifiers are inserted into the
‘Gene’ table at the initialization stage.

The data collection process consists of first retrieving identifiers
of human orthologs for mouse and fly genes and then retrieving all
required annotations for all gene identifiers present in the ‘Gene’
table. In particular, interacting genes are retrieved and inserted into
the ‘Interaction’ table. Identifiers for interacting genes which are
not present in the ‘Gene’ table are then added and undergo their
own data collection process. Nevertheless at this stage, interaction
partners are omitted to prevent an explosion of relationships.

The specification of data wrappers implies selecting appropriate
DBs (see Section 4) and mapping the relevant fields onto the ACGR
relational data model. Specific wrappers have been designed to plug
in external ranking tools for calculating functional similarity values
between genes and diseases. Such wrappers will insert tuples into
the ‘Gene_Disease_Similarity’ table, i.e. one tuple per gene and per
ranking tool.

3.3 Building sets of candidate genes
In order to express the candidate gene definitions, views are defined
in Standard Query Language (SQL) at the logical level of our
conceptual framework. A view associates an SQL query with a view
name leading to the creation of a virtual table. We have selected
four basic definitions leading to the four views described below.

Table 1. Relational logical data model for ACGR DB

Table name Attribute set

Gene Gene_ID, Symbol, Organism, Complete_name,
Chromosome, Cytoband, OMIM_ID, Source_ID

GO_Term GO_ID, Term, GO_section, Definition
Gene_GO_Term Gene_ID, GO_ID, Source_ID
Orthology Gene_ID1, Gene_ID2, Source_ID
Interaction Gene_ID1, Gene_ID2, Source_ID, Interaction_Type
Disease Disease_ID, Synopsis, OMIM_ID
Disease_GO_Term Disease_ID, GO_ID, Author_ID
Ranking_Tool Tool_ID, Description, URL
Gene_Disease_Similarity Gene_ID, Disease_ID, Author_ID, Tool_ID,Similarity
Experiment Exp_ID, Type, Date, Platform,

Analysis_procedure, Disease_ID
Gene_In_Experiment Gene_ID, Exp_ID, Ratio

It consists of a set of abbreviated table schemas. Each table contains a set of attributes
including a primary key (in bold face) and one or more foreign keys (in italics).
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The corresponding SQL queries can be found in the Supplementary
Material. For the sake of readability, the datasets produced upon
view execution are called ‘Datasets’.

Dataset1: genes ranked according to their functional similarity
with disease description. This first view retrieves the gene symbol,
species, cytogenetic localization and similarity of all ACGR DB
genes, sorted by decreasing similarity value. Human, mouse and fly
genes are thus collated according to their similarity with disease
description. Mouse genes are often ranked better than their human
orthologs because of the richer annotation in the model organism.
The higher a gene is ranked in Dataset1, the stronger is the functional
relationship with the disease.

Dataset2: human orthologs of model organism genes listed in
Dataset1. This second view displays all features of Dataset1 for
genes retrieved from model organisms (here, mouse and fly) together
with the gene symbol, cytogenetic localization and similarity of their
human orthologs. Good ranking of a mouse gene can pull its human
ortholog to the top of Dataset2 when it was formerly at the bottom of
Dataset1 because of poor GO annotation in human. This behaviour
is observed, in the CHD7 gene of CHARGE syndrome, for example
(see subsequently).

Dataset3: genes interacting with the genes listed in Dataset1. For
each gene in Dataset1, the symbol, cytogenetic localization and
similarity of the genes reported as interacting with it (mostly via the
gene products but other types of interactions are not excluded) are
displayed. The source of information concerning these interactions is
also displayed. Only intra-species interactions are listed here. Genes
that display proper cytogenetic localization but poor similarity
values may reveal good disease candidates because of interactions
with well-ranked genes mapped elsewhere in the genome.

Dataset4: human orthologs of model organism genes listed in
Dataset3. Dataset4 is intended to display candidate genes which
are human orthologs of model organism genes that interact with
well-ranked genes.

When experimental data are available, it can be included into each
of the views described above, thereby producing four supplementary
views: from Dataset1Exp to Dataset4Exp. An example of this is
presented below in the case study on AICARDI syndrome.

Further queries on the basic ACGR views can then provide
customized lists of candidate genes. Indeed, creating sets of
annotated candidate genes as SQL views allow biologists to
benefit from the numerous advantages of this powerful approach.
First, writing new queries is simplified. Second, the views are
automatically refreshed whenever the DB is updated. Finally,
defining views contributes to the integrity and security of the DB
because end-users may be given tuned privileges on views rather
than on the underlying data tables.

4 IMPLEMENTATION
The technical implementation choices described in this work are
not mandatory since other techniques are conceivable depending
on the target deployment environment. For example, here wrappers
for retrieving and integrating data from various data sources have
been implemented as scenarios of the Xcollect software (Devignes
et al., 2005). Xcollect scenarios are configured to formulate queries
automatically, send them to a remote web resource, parse the

returned document and store the desired data in an XML document.
Capturing the date of last DB update is included in each scenario
to help track data quality. The specific Xcollect scenarios used here
are available in the Supplementary Material.

In this work, data sources were selected according to their
updating frequencies, annotation quality and coverage. Thus, GO
terms corresponding to keywords describing the disease were
retrieved from AMIGO DB; genes annotated with selected GO
terms were retrieved from Entrez-Gene at NCBI as well as all
gene annotations. Symbols of orthologous genes were retrieved from
Entrez-HomoloGene.

The storage of the collected data in the ACGR DB was
performed with the help of XSL transformations designed to convert
each Xcollect session document into appropriate SQL commands.
Besides Xcollect wrappers, we developed a wrapper to invoke the
GO-Family program available in the GOToolBox (Martin et al.,
2004). The program was modified slightly because a list of GO
terms rather than a list of reference gene symbols is required as well
as the list of genes to be ranked. Briefly, the program fetches all
GO terms annotating a candidate gene as well as their parent terms.
It also fetches all parents of the disease-specific GO terms. Then it
calculates a similarity percentage taking into account identical and
non-identical terms between the set of GO terms associated with the
candidate gene and the set of disease-specific GO terms.

The EasyPHP package was used for data management and
user interface development. This package includes a web server
(Apache), a DBMS (mySQL) and a script language (PHP). The
corresponding programs along with a user guide are available at
http://bioinfo.loria.fr/projects/acgr/acgr-software/.

5 RESULTS AND DISCUSSION

5.1 Three case studies
The ACGR approach was initially motivated by the need to analyse
results obtained for AICARDI syndrome (OMIM %304050) which
is currently being investigated experimentally (Yilmaz et al., 2007).
To date, no responsible gene is known for this disease. Two other
rare syndromes, CHARGE (OMIM #214800) and GOLTZ (OMIM
#305600), were selected from the literature. The genes responsible
for these two syndromes have recently been reported (Grzeschik
et al., 2007; Vissers et al., 2004; Wang et al., 2007b), but this
information is not included in the annotations collected in the ACGR
DB. It is therefore relevant to test the ACGR approach on these
recently elucidated diseases.

5.2 Populating the DB
Table 2 shows for the three case studies the correspondence between
disease phenotypes and Biological Process GO terms. Phenotypes
were selected from OMIM notices regarding diagnoses. Keywords
(data not shown, see Supplementary Material) were chosen to
characterize each phenotype. For a given keyword, GO terms
were selected at the relevant level of the GO hierarchy. A GO
term is included when all its children are relevant. In the case
of AICARDI syndrome, a third phenotype (infantile spasms) is
frequently observed but does not correspond to any specific GO
term. According to the clinicians, this phenotype is covered by the
‘Forebrain development’ GO term.
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Experimental data were inserted into the DB for the AICARDI
syndrome as explained in Section 3.2. These data concern 300 genes
which ANOVA analysis of several transcriptomic experiments found
to be dysregulated (Yilmaz, 2007). For these genes the ratio attribute
was set to 1; whereas, it was set to 0 for any other gene.

Table 3 summarizes the contents of the ACGR DB for the three
case studies. The #GO column displays the number of GO terms
specific to the disease. The #fly, #mouse and #human columns show
the number of genes annotated by at least one of these GO terms for
each organism. The ‘#dysregulated’ column indicates the number
of experimentally determined human dysregulated genes stored in
the DB. The last column gives the total number of genes after the
inclusion of other orthologous and interacting genes.

5.3 Building sets of annotated candidate genes
Dataset1 to Dataset4 were constructed for each case study as
described in Section 3.3 to enable queries reflecting expert
hypotheses about candidate genes to be formulated. The complete
tables are available as Supplementary Material. Table 4 displays the

Table 2. List of GO terms defined by the clinicians on August 31, 2007

Syndrome Phenotype GO term (Biological Process hierarchy)

CHARGE

Coloboma Camera-type eye morphogenesis [47]
Choanal atresia Nose development [2]

Embryonic cranial skeleton morphogenesis [16]
Ear abnormality Ear development [155]
Deafness Sensory perception of sound [203]
Heart anomaly Heart morphogenesis [69]

GOLTZ
Skin defects Skin development [22]
Digital anomalies Embryonic digit morphogenesis [28]
Skeletal defects Embryonic skeletal morphogenesis [25]

AICARDI

Corpus callosum Forebrain development [191]
agenesis Corpus callosum development [0]

Corpus callosum morphogenesis [0]
Neuron migration [139]
Neural plate development [117]

Chorioretinal lacunae Camera-type eye morphogenesis [47]

The number of genes annotated by a GO term is indicated in brackets.

Table 3. Numbers of genes stored in the ACGR DB for the three case studies

Disease #GO #fly #mouse #human #dysregulated #genes

CHARGE 6 29 172 223 0 1410
GOLTZ 3 0 55 272 0 1583
AICARDI 6 2 182 166 300 2218

first three tuples from CHARGE Dataset2. The human CHD7 gene
that is responsible for this disease (Vissers et al., 2004) appears in
second position as orthologous to the mouse Chd7 gene which has a
high similarity to disease description (48%). It is worth noting that
the low similarity of the human CHD7 gene annotation to CHARGE
GO terms (4%) relegates it to the bottom of Dataset1. Selecting
human genes from chromosome 8 in CHARGE Dataset2 yields the
CHD7 gene as the first-ranked candidate gene.

The CHARGE case study shows that the ACGR approach would
have been able to designate the CHD7 gene as the best candidate
gene in the group of nine genes identified by the authors at 8q12
thus prioritizing its sequencing. It is worth noting that although
the association of CHD7 with CHARGE syndrome was established
3 years ago, the GO annotation of this gene does not reflect this
association.

Table 5 shows the first six tuples from GOLTZ Dataset4. Despite
its low similarity to disease description (7%), the responsible human
PORCN gene appears at the fifth position in GOLTZ Dataset4
that contains 51 lines and as the first candidate gene located on
chromosome X. This is due to the fact that the mouse Porcn gene is
reported as interacting with the mouse Wnt7a gene which has good
similarity to the disease description. Hence the ACGR approach
could have pointed to the PORCN gene even before the localization
refinement of the disease provided by the CGH array experiment
(Grzeschik et al., 2007; Wang et al., 2007b).

In the case of AICARDI syndrome, Dataset1Exp to Dataset4Exp
were produced including transcriptomic data. A first query on
Dataset1Exp retrieved 71 genes located on human chromosome X.
Table 6 displays the first four genes of this list. The best-ranked
PLXNA3 gene seems to be an interesting candidate. Its annotation
is rather similar to the AICARDI GO terms (56%). However, to
date, it has not been associated with any human disease. The
following ARX and SOX3 genes, namely MRX54 (OMIM #300419)

Table 4. The three top-ranked tuples from CHARGE Dataset2

Symbol Organism Cyto-band Sim Orthol_ Orthol_ Orthol_
Symbol Cytoband Sim

Tmie mouse 9 64.0 cM 62 TMIE 3p21 62
Chd7 mouse 4 1.0 cM 48 CHD7 8q12.2 4
Gjb6 mouse 14 22.5 cM 48 GJB6 13q12 45

The column Sim refers to the values taken by the Similarity attribute of the
Gene_Disease_Similarity table. These values are expressed as percentages owing to
the particular ranking tool that was used. The Orthol_Symbol, Orthol_Cytoband and
Orthol_Sim columns display values for the human orthologs of the considered mouse
genes.

Table 5. The six top-ranked tuples from GOLTZ Dataset4

Symbol Organism Cytoband Sim Interac_ Symbol Source Interac_ Cytoband Interac_Sim Orthol_ Symbol Orthol_ Cytoband Orthol_ Sim

Gna12 mouse 5 82.0 cM 35 Ppp5c BIND 7 4.0 cM 4 PPP5C 19q13.3 4
Col5a2 mouse 1 C1 32 Smad2 BIND 18 48.0 cM 15 SMAD2 18q21.1 17
Col5a2 mouse 1 C1 32 Smad7 BIND 18 unknown 5 SMAD7 18q21.1 5
Col5a2 mouse 1 C1 32 Samd3 BIND 9 unknown 15 SMAD3 15q22.33 16
Wnt7a mouse 6 39.5 cM 31 Porcn BIND X 2.15 cM 5 PORCN Xp11.23 7
Lgals3 mouse 14 C1 28 Sufu BIND 19 47.0 cM 17 SUFU 10q24.32 19

Columns Interac_Symbol to Interac_Sim columns refer to the interacting genes of considered mouse genes. Columns Orthol_Symbol to Orthol_Sim are described in Table 4.
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Table 6. The four top-ranked human genes localized on chromosome X from AICARDI Dataset1Exp

Symbol Organism Sim Cytoband Ratio

PLXNA3 Human 56 Xq28 0
ARX Human 40 Xp21 0
SOX3 Human 34 Xq27.1 0
DCX Human 26 Xq22.3-q23 0

Table 7. The four top-ranked human tuples from AICARDI Dataset3Exp

Symbol Cytoband Sim Ratio Interac_Symbol Interac_Cytoband Interac_Sim Interac_Ratio Source

DLX5 7q22 50 1 MAGED1 Xp11.23 3 0 HPRD
UBE3A 15q11-q13 22 1 UBQLN2 Xp11.23-p11.1 8 0 HPRD
CXCL10 4q21 21 1 CXCR3 Xq13 10 0 HPRD
IGF1 12q22-q23 21 1 IGSF1 Xq25 6 0 BIND

The columns Symbol to Ratio refer to dysregulated genes, and the columns Interac_Symbol to Interac_Ratio refer to the interacting
candidate genes. The Source column indicates the database where the interaction is documented.

and MRGH (OMIM #300123), are both responsible for diseases
involving mental retardation. The next DCX gene is a good internal
control since it is responsible for X-linked lissencephaly (LISX,
OMIM #300067), a disease-like AICARDI syndrome involving
agenesis of the corpus callosum and multiple heterotopia.

Further queries were applied to AICARDI Dataset3Exp to explore
possible interactions between dysregulated genes and candidate
genes. Table 7 shows four candidate genes (‘Interac_Symbol’
column) from Dataset3Exp, located on chromosome X and
interacting with the four best-ranked dysregulated genes (‘Symbol’
column). The MAGED1 gene interacts with the DLX5 gene which
is dysregulated in our transcriptomic experiments and its GO
annotation displays 50% similarity with the AICARDI-specific GO
terms. The interaction between these two gene products is based on
in vivo experiments (Masuda et al., 2001).

5.4 Discussion
Overall, the ACGR approach has received enthusiastic feedback
from experimentalists. Indeed conducted experiments yielded very
satisfying results in the CHARGE and GOLTZ case studies. We
have shown that in both cases responsible genes related to the
disease are found at the first rank position when chromosome
localization is taken into account. Thus, the ACGR approach would
have been useful at the time of the discovery of these responsible
genes to avoid unnecessary sequencing. In the case of AICARDI
syndrome, the ACGR approach provided several meaningful and
promising candidate genes that are currently being analysed further.
For instance, the MAGED1 gene displays several features associated
with disease genes (Tu et al., 2006). It is a 99.3 kb long gene
due to a large intron (91 kb) separating the first exon from the 12
other exons that are grouped over the remaining 8 kb. Interestingly,
two of the retrieved candidate genes (MAGED1 and UBQLN2)
are located in the same cytogenetic band (Xp11.23), which is
known to be correlated with several neuro-psychiatric disorders. It
should be noted that for this disease, the small number of recruited
patients hampers the application of purely experimental protocols.
In addition to the presented case studies, ongoing investigations
indicate that the approach presented here may facilitate future
endeavours to identify susceptibility genes for complex diseases.

The robustness and flexibility of our approach makes it possible
to explore various alternative approaches or strategies, including
varying the ranking procedure and the selection of primary data
sources. For example, data about interaction networks could be
retrieved from the protein complexes curated by Lage et al. (2007).
The GO-Family algorithm used for gene ranking in this study could
be replaced by any other similarity measurement between GO terms
(Lord et al., 2003; Wang et al., 2007a; Zhang et al., 2006). The
similarity between eVOC terms annotating both gene expression
and affected tissues could be used to assess ‘is_co-expressed’
relationships (Tiffin et al., 2005), for example.

A possible limitation of the current work may be the low number
of case studies analysed. Since an expert of each studied disease has
to be involved in the first step of the approach, this clearly hampers
automated large-scale evaluation. Moreover, it should be stressed
that success in retrieving at a good rank the gene responsible for a
disease strongly depends on both user’s expertise and the quality of
available data.

Nevertheless, the results presented here clearly demonstrate the
explicit querying capabilities of theACGR system and the originality
of this approach for providing explanations on why a certain gene
is related to a disease.
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